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Abstract

Physiological experiments have highlighted how the dendrites of
biological neurons can nonlinearly process distributed synaptic inputs.
This is in stark contrast to units in artificial neural networks that are
generally linear apart from an output nonlinearity. If dendritic trees can
be nonlinear, biological neurons may have far more computational power
than their artificial counterparts. Here we use a simple model where the
dendrite is implemented as a sequence of thresholded linear units. We
find that such dendrites can readily solve machine learning problems,
such as MNIST or CIFAR-10, and that they benefit from having the
same input onto several branches of the dendritic tree. This dendrite
model is a special case of sparse network. This work suggests that
popular neuron models may severely underestimate the computational
power enabled by the biological fact of nonlinear dendrites and multiple
synapses per pair of neurons. The next generation of artificial neural
networks may significantly benefit from these biologically inspired
dendritic architectures.
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1 Introduction

1.1 Dendritic Nonlinearities

Though the role of biological neurons as the mediators of sensory integration
and behavioral output is clear, the computations performed within neurons
has been a point of investigation for decades (McCulloch and Pitts, 1943;
Hodgkin and Huxley, 1952; FitzHugh, 1961; Poirazi et al., 2003a; Mel, 2016).
For example, the McCulloch and Pitts (M&P) neuron model is based on an
approximation that a neuron linearly sums its input and maps this through
a nonlinear threshold function, allowing it to carry out a selection of logic-
gate-like functions, which can be expanded to create logic-based circuits
(McCulloch and Pitts, 1943). The M&P neuron also sets the foundation for
modern day neurons in artificial neural networks (ANNs), where each neuron
in the network linearly sums its input and maps this through a nonlinear
activation function (Goodfellow et al., 2016; Lecun et al., 2015). ANNs, made
up of often millions of these neurons, are demonstrably powerful algorithms
that can be trained to solve complex problems, from reinforcement learning to
natural language processing to computer vision (Lecun et al., 2015; Krizhevsky
et al., 2006; Mnih et al., 2015; Devlin et al., 2018; Huval et al., 2015). However,
M&P neurons and neurons of ANNs are point-neuron models that rely on
linear sums of their inputs, whereas the observed physiology of biological
neurons shows that dendrites impose nonlinearities on their synaptic inputs
before summation at the soma (London and Häusser, 2005; Poirazi et al.,
2003b; Antic et al., 2010; Agmon-Snir et al., 1998). This indicates that M&P
and ANN neurons may radically underestimate what individual neurons can
do.

Although many models of single neuron activity use linear point neurons
(Ujfalussy et al., 2015), it is known that dendritic nonlinearities are responsible
for a variety of neuronal dynamics and can be used to mechanistically explain
the roles of biological neurons in a variety of behaviorally significant circuits
(London and Häusser, 2005; Agmon-Snir et al., 1998; Barlow and Levick, 1965).
For example, passive properties of dendrites lead to attenuation of current
along the dendrite, allowing for low-pass filtering of inputs (London and
Häusser, 2005; Rall, 1959). Active properties of dendrites allow for synaptic
clustering to result in super-linear summation of voltage inputs upon reaching
the soma (Antic et al., 2010; Schiller et al., 2000; Branco and Häusser, 2011).
These properties allow for important functions such as auditory coincidence
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detection and even logical operations within dendrites (Mel, 2016; London
and Häusser, 2005; Agmon-Snir et al., 1998; Koch et al., 1983). To fully
explore the scope of biological neuron function it is then important to model
more sophisticated computations within dendritic trees.

Models for individual neurons with meaningful dendrites have been pro-
posed to better understand neuron computation (Mel, 2016; Gerstner and
Naud, 2009). Biologically detailed approaches, such as employing the multi-
compartmental biophysical model (Hines and Carnevale, 1997), have been
fitted to empirical data in order to study dendritic dynamics such as backprop-
agating action potentials and nonlinear calcium spikes (London and Häusser,
2005; Hay et al., 2011; Wilson et al., 2016). Poirazi et al. (Poirazi et al.,
2003a) pioneered a more abstracted approach of modelling single neurons
that isolates the impacts of including dendritic sigmoidal nonlinearities on
predicting neural firing rates produced by dendrite-complete biophysical mod-
els. This novel approach used a sparsely connected two-layer ANN whose
structure is analogous to that of a dendritic tree, showing it is possible to
model individual neurons with ANNs.

1.2 Repetition of synaptic inputs

While the morphology of a dendritic tree is key to modelling its computational
capabilities (Mel, 2016; London and Häusser, 2005; Mel, 1993; Segev, 2006;
Wilson et al., 2016), it may also be important to consider the role of repeated
synaptic inputs to the same postsynaptic neuron. Complex computation
in ANNs depends on dense connection, which repeats inputs to each node
in each layer (Lecun et al., 2015). Empirically, electron microscopy studies
have shown that a presynaptic axon synapses approximately 4 times per
postsynaptic neuron (Kincaid et al., 1998). Also, these studies show evidence
of a certain kind of repeated synapses called multi-synaptic boutons (MSBs)
(Jones et al., 1997). MSBs have shown to occur 11.5% of the time in rats
living in enriched environments (Jones et al., 1997). Additionally, it has
been shown that an in vitro long-term potentiation (LTP) induction protocol
can also increase the number of MSBs of the same dendrite 6-fold (Jones
et al., 1997). LTP, involved in learning and memory (Bliss and Lomo, 1973;
Stuchlik, 2014), can then lead to the replication of synapses between two
neurons. This suggests that repeated synapses may be important for changing
the computations a single neuron can do.
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1.3 Contribution

By training and testing ANNs on complex tasks, the field of machine learning
gains computational clarity (Goodfellow et al., 2016; Lecun et al., 2015). At
the moment the field of neuroscience does not have this kind of in-depth
computational clarity with individual, dendrite-complete neurons, despite
the fact that we can describe the different behaviorally significant functions
individual neurons are able to fulfill (London and Häusser, 2005; Agmon-Snir
et al., 1998; Barlow and Levick, 1965; Gidon et al., 2020). If we are to consider
a neuron as an input/output device with a binary tree as its dendritic tree,
we may be able to test its ability to learn to perform complex tasks and gain
insight on how dendritic trees may impact the computation of a defined task.

Here we design a trainable, dendrite-complete neuron model in order to
test its performance on binary classification tasks taken from the field of
machine learning. The model comprises a sparse ANN: a binary tree in which
each nonlinear unit receives only 2 inputs. The nonlinearities and structural
constraints of this ANN can be compared to a linear point-neuron model,
allowing us to test the impacts of nonlinearities in a dendrite-like tree. The
model also allows us to test the impact of repeated inputs on task performance.
We found that our binary tree model, representing a single biological neuron,
performs better than a comparable linear classifier. Furthermore, when
repeated inputs are incorporated into our model, it approximately matches
the performance of a comparable 2-layer fully connected ANN. These results
demonstrate that complex tasks, for which it has been assumed that an
ensemble of multiple relatively simple neuron models are required, can in fact
be computed by a singular, dendrite-complete neuron model.

2 Results
One of the classical questions in neuroscience is how dendrite structure and the
various synaptic inputs to the dendritic tree affect computation (London and
Häusser, 2005; Mel, 2016; Rall, 1959). Traditional neuron models are designed
to best match observed neural dynamics (Poirazi et al., 2003a; Gerstner and
Naud, 2009; Brette et al., 2011; Gouwens et al., 2018; Hay et al., 2011; Ahrens
et al., 2006), however, with exceptions (Poirazi et al., 2003a; Ujfalussy et al.,
2015; Gidon et al., 2020; Zador et al., 1992; Zador and Pearlmutter, 1996;
Legenstein and Maass, 2011), the impacts of nonlinearities and, especially,
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Figure 1: Novel ANN neuron model with repeated inputs. Left: Traced
morphology of the dendrite of a human BA18 (occipital) cell (Travis et al.,
2005). Soma location is marked in pink. Middle: A representation of a
hypothetical neuron. Inputs in dark blue at the terminal ends of one subtree
are repeated in light blue in 3 other subtrees. Upper right: Representation of
a M&P-like linear point neuron model. Middle right: k-tree neuron model,
where k = number of subtrees. Each input and hidden node has leaky ReLU
activation function, and the output node has a sigmoid activation function.
Bottom right: Representation of a 2-layer fully connected neural network
(FCNN). Each input and hidden node has leaky ReLU activation function
and the output node has a sigmoid activation function.

the impacts of repeated inputs on the computational capabilities of neurons
have yet to be quantified in the way we suggest. The computational abilities
of ANNs can be judged by their performance on various complex tasks
(Goodfellow et al., 2016; Lecun et al., 2015). Following this lead, we imposed
dendritic binary tree structural constraints (Figure 1) on a trainable nonlinear
ANN, resulting in a special case of sparsely connected ANN. We call this a
1-tree because it is similar to the structure of a single soma-connected subtree
of a dendritic tree. (Figure 1) By repeating this subtree structure multiple
times and feeding each the exact same input, we create what we call a k-tree,
where k is the number of repeated trees connected to a soma node. By using
a trainable k-tree that has a biological structure constraint and repeated
inputs, we can quantitatively judge the computational performance of this
neuron model on performing complex tasks.

Neurons, arguably, produce binary outputs (presence or absence of an
action potential) (Hodgkin and Huxley, 1952). Therefore, to fairly judge
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256 inputs 1024 inputs 3072 inputs
k k-tree FCNN k-tree FCNN k-tree FCNN
1 511 514 2,047 2050 6,143 6,146
2 1,022 1,028 4,094 4,100 12,286 12,292
4 2,044 2,056 8,188 8,200 24,572 24,584
8 4,088 4,112 16,376 16,400 49,144 49,168
16 8,176 8,224 32,752 32,800 98,288 98,336
32 16,352 16,448 65,504 65,600 196,576 196,336

Table 1: ANN Parameter Size Comparison. Fully connected neural network
(FCNN) architectures are matched in parameter size to the k-tree architec-
tures.

an individual neuron model’s performance on a complex task, we will use a
binary classification task. The complexity in the tasks can come from high-
dimensional vector inputs from images taken from classic computer vision
datasets used in the field of machine learning (Figure 2).

As controls for performance comparison, we used a linear discriminant
analysis (LDA) linear classifier to approximate the performance of a linear
point neuron model, and a fully connected neural network (FCNN) that is
comparable in size to the k-tree. The linear classifier model is relatively
simple compared to the more parameter-complex k-tree and FCNN, and we
expect it to be able to learn fewer functions (Dreiseitl and Ohno-Machado,
2002); therefore, its performance sets an expected lower-bound. The FCNN is
densely connected and consists of 2-layers. With its nonlinearities, we expect
it to learn to express a greater variety of functions, therefore its performance
sets an expected upper bound. To compare the two ANNs, let us say that
n is the number of pixel inputs to each classifier, determining the number
of parameters, P , needed in each network, and h is the number of nodes in
the hidden layer of the FCNN. Based on the constraints of each network, the
FCNN will then have P = h(n+ 1) and the k-tree will have P = k(2n− 1).
To match the number of parameters of the FCNN to that of the k-tree, we
assert that h = 2k. (Table 1).
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Figure 2: Classification task datasets. We considered seven machine learning
datasets of varying content and size, each with ten classes. For each dataset,
two of the classes were chosen by selecting the least linearly separable pair
using a linear discriminant analysis (LDA) linear classifier. Each image was
vectorized in order to be compatibly presented to each model.

2.1 Nonlinear tree neuron model performs better than
a linear classifier

Classical models of neurons have been of linear point neurons that do not
take into consideration dendritic nonlinearities (McCulloch and Pitts, 1943;
Hodgkin and Huxley, 1952; FitzHugh, 1961). By considering dendritic non-
linearity and structure, we designed a new neuron model: a nonlinear ANN
with the structural constraints of a dendritic tree called a 1-tree. We then
compared the performance of this new model against a proxy for a point
neuron, an LDA linear classifier. Focusing on one simple image classification
task of a binary dataset of handwritten numbers, MNIST, we compare the
computational performance of the 1-tree and the linear classifier and the
nonlinear, structurally dendritic 1-tree. Significantly, the performance of the
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MNIST FMNIST EMNIST KMNIST
1-tree 0.9220 ± 0.0179 0.7900 ± 0.0202 0.8524 ± 0.1520 0.8035 ± 0.0488
32-tree 0.9635 ± 0.0043 0.8300 ± 0.0063 0.9851 ± 0.0029 0.8791 ± 0.0113
LDA 0.8753 ± 0.0120 0.6750 ± 0.0108 0.5821 ± 0.0180 0.6790 ± 0.0164

1-FCNN 0.9546 +- 0.0053 0.8262 +- 0.00063 0.9779 +- 0.0046 0.8674 +- 0.0188
32-FCNN 0.9696 ± 0.0053 0.8290 ± 0.0075 0.9846 ± 0.0034 0.9088 ± 0.0080

1-tree vs LDA p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
1-tree vs 1-FCNN p = 0.0001 p = 0.0001 p = 0.0235 p = 0.0018

32-tree vs 32-FCNN p = 0.0156 p = 0.7516 p = 0.7357 p < 0.0001

CIFAR10 SVHN USPS
1-tree 0.5605 ± 0.0140 0.5811 ± 0.0412 0.8221 ± 0.0465

32-tree 0.5784 ± 0.0111 0.6036 ± 0.0661 0.8981 ± 0.0080
LDA 0.5254 ± 0.0069 0.5186 ± 0.0102 0.8362 ± 0.0306

1-FCNN 0.5592 +- 0.0148 0.6117 +- 0.0844 0.8971 +- 0.0199
32-FCNN 0.5654 ± 0.0104 0.7794 ± 0.0301 0.9067 ± 0.0169

1-tree vs LDA p < 0.0001 p = 0.0005 p = 0.4897
1-tree vs 1-FCNN p = 0.8736 p = 0.4024 p = 0.0012

32-tree vs 32-FCNN p = 0.0344 p < 0.0001 p = 0.2031

Table 2: k-tree Mean Performance Comparison to FCNN and LDA. Per-
formance accuracy is listed as mean ± standard error for a set of 10 trials.
p-Values calculated using student’s t-test. LDA and FCNN are used as lower
and upper bounds that the k-tree is compared to.

1-tree is greater than that of the linear classifier with p < 0.0001 (Figure
3A, Table 2). Repeating this test with 6 more datasets, we find that for
most of these datasets, regardless of the size of the input dimensionality
in each dataset, the 1-tree performs consistently above the linear classifier
(FMNIST, EMNIST, KMNIST, CIFAR10: p < 0.0001; SVHN: p = 0.0005)
(Figure 3B-F, Table 2). Exceptionally, the performance of the 1-tree on the
USPS dataset had no significant difference of performance compared tothe
linear classifier. The USPS dataset has the smallest input dimensionality (256
pixels) and leads to a 1-tree with the fewest parameters (P = 511, Table 1).
It could be the network was not complex enough to perform better than the
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Figure 3: Performance of 1-tree compared to linear classifier and FCNN.
1-tree performance is compared to that of a lower bound, LDA, and an upper
bound, FCNN. For most tasks, the 1-tree performs better than LDA, and
FCNN performs better than the 1-tree.

linear classifier. Barring this exception, not only do dendrites have nonlinear
properties, nonlinearities in a dendrite-like neuron model generally improves
its computational performance compared to that of a linear classifier.

For comparison to the 1-tree, we tested a 2-layer fully connected neural
network (FCNN) matched in parameter size to the 1-tree. In the MNIST
task, the FCNN performed significantly better than the 1-tree with a p =
0.0001 (Figure 3A, Table 2). We then tested the 6 additional datasets,
resulting in differently sized 1-trees and FCNNs due to differences in input
sizes. The similarly sized FMNIST, EMNIST, and KMNIST dataset networks
maintained the significant difference between the 1-tree and FCNN (Figure
3B-D, Table 2). The USPS dataset also maintained a significant difference
(Figure 3G). The CIFAR10 and SVHN datasets did not have a significant
difference in performance (Figure 3E-F, Table 2). The high variance in the
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Figure 4: Performance of k-tree compared to a linear classifier and FCNN.
k-tree performance is compared to that of a lower bound, LDA, and an upper
bound, FCNN. The k is doubled 5 times, resulting in tests of k = 1, 2, 4, 8,
16, 32. In all cases, as k (the number of repeated dendritic subtrees) increases,
so does the performance accuracy of the k-tree, approaching the upper bound.

FCNN performance for CIFAR10 and SVHN (Figure 3E-F, Table 2) may be
due to the FCNN’s failure to train in some trials, resulting in performances
close to 50%. For most tasks we tried, the FCNN performed much better
than the 1-tree.

2.2 Repeating inputs to tree model increases perfor-
mance comparable to FCNN with a small fraction
of the parameters

The computational impact of repeated inputs to a dendritic tree is not clear,
however studies have shown increased repetition of inputs as a result of
plasticity events (Toni et al., 1999), which has implications for learning and
memory. By modifying the 1-tree by repeating the tree structure and input to
the model k times, we can then achieve a k-tree neuron model (Figure 1). This
can be a proxy for seeing how repeated inputs might impact computational
performance on various binary image classification tasks. Returning to the
MNIST dataset, we tested k = 1, 2, 4, 8, 16, 32 and observed how increasing
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k can gradually improve performance. For example, compare the performance
of a 1-tree to that of a 32-tree in the MNIST binary classification task (p =
0.0000) (Figure 4A). Remarkably, the performance of the 32-tree (96.35 ±
0.43%) is very close to the performance of the FCNN (96.96 ± 0.53%), yet
still different with p = 0.0156 (Figure 4A, Table 2). Increasing the number of
repeats to a k-tree neuron model improves its performance on the MNIST
binary classification task, nearly meeting the performance of a comparable
FCNN.

In order to see if this result generalizes, we tested the k-tree on 6 additional
binary image classification datasets. All tasks see an increase in performance
as the number of subtrees in the k-tree increases up to k = 32 (Figure 4B-G).
The 32-tree has meets the performance of the FCNN in the FMNIST (p =
0.7516), EMNIST (p = 0.7357), and USPS (p = 0.2031) tasks (Figure 4B,C,G,
Table 2). For the CIFAR10 dataset, FCNN performance peaks at k = 4,
then decreases, resulting in the 32-tree surpassing the 32-FCNN (Figure 4E,
Table 2). We can then say that increasing the number of repeats to a k-tree
neuron model improves its computational performance in all tasks such that
it approaches the performance of a comparable FCNN.

3 Methods

3.1 Computational Tasks

Knowing that the output of a neuron is binary (presence or absence of an
action potential), we chose to train our neuron model on a binary classification
task. Using standard, high-dimensional, computer vision datasets, we used
linear discriminant analysis (LDA) linear classifier to determine which 2
classes within each dataset were least linearly separable through training the
LDA linear classifier and testing it on pairs of classes (Figure 2). We used
MNIST (Lecun et al., 1998), Fashion-MNIST (Xiao et al., 2017), EMNIST
(Cohen et al., 2017), Kuzushiji-MNIST (Clanuwat et al., 2018), CIFAR-10
(Krizhevsky, 2009), Street View House Numbers (SVHN) (Goodfellow et al.,
2014), and USPS (Hastie et al., 2001) datasets.
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3.2 Controls

The controls we use are the LDA linear classifier and a fully connected neural
network (FCNN). The linear classifier sets a baseline performance for linear
separability of each of the two classes per dataset, in addition to acting as a
proxy for a linear point neuron model. The 2-layer FCNN is a comparable
reference to see if k-tree performance meets or exceeds that of a densely
connected network. The hidden layer of the FCNN is equal to twice the
number of trees (2k) in the k-tree it is compared to and its output layer has
1 node.

3.3 Data Preprocessing

We used datasets from the torchvision (version 0.5.0) python package. We
then padded the 28 by 28 resolution images with zeros so that they were 32
x 32, and flattened the images to 1-D vectors. We then split the shuffled
training set into training and validation sets (for MNIST, the ratio was 1:5
so as to let the validation set size match the test set), Then we split the
resultant shuffled training set and validation set into 10 independent subsets.
Each set was used for a different cross-validation trial.

3.4 Model Architecture

Using PyTorch (version 1.4.0), we designed the k-tree model architecture to
be a feed forward neural network with sparse binary-tree connections. The
weight matrices, which were dense tensors, of each layer were sparsified such
that each node receives 2 inputs and produces 1 output. For example, the
1024 pixel-size images were fed to a 1-tree with 10 layers: the input layer
is 1024 by 512, the 2nd layer 512 by 256 etc. until the penultimate layer
is reached with dimensions 2 by 1. The final layer is k by 1 where k is the
number of subtrees in the k-tree; in this case it would be 1 by 1. In the
special case of the 3072 pixel size images, inputs were fed into a 1-tree with
11 layers, the input layer is 3072 by 1024, the 2nd layer is 1024 by 512, etc.

To account for the sparsification, we altered the initialization of the weight
matrices: we used standard “Kaiming normal” initialization with a gain of
1/density of sparsified dense tensor weight matrices. We also created a “freeze
mask” that recorded which weights were set to 0 in order to freeze those
weights during training later. For the forward step, we used leaky ReLU with
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a slope of 0.01 for nodes between layers, and sigmoid nonlinearity at the final
output node which kept output values between 0 and 1.

3.5 Model Training

The model, inputs, and labels were loaded onto a Nvidia GeForce 1080 GPU
using CUDA version 10.1. The batch size was 256. Early stopping was used
such that after 60 epochs where no decrease in the loss is observed, training
is stopped. Loss was calculated using binary cross entropy loss. We used
an Adam optimizer with a learning rate of 0.001. Within the training loop
immediately after the backward step and before updating the weights using
the gradients, we zeroed out the gradients indicated by the freeze mask so as
to keep the model sparsely connected. Each train-test loop was run for 10
trials with a different training subset each trial and the same test set every
trial. Trial averages and standard deviation were then calculated and p-values
were calculated using student t-test.

4 Discussion
Here we quantify the potential computational capabilities of an abstracted
neuron model with dendritic features and repeated inputs. We designed a
trainable neuron model: a sparse ANN with binary dendritic tree constraints
made up of nonlinear nodes (Figure 1). The tree that resulted from this
constraint was repeated k times with identical inputs in order to explore
the impacts of repeated inputs. We judged the model by determining its
performance on 7 high-dimensional binary image classification tasks (Figure
2), and compared its performance to a linear classifier, a lower bound, and
a comparable FCNN, an upper bound. The 1-tree, with its nonlinear nodes
and dendritic structure constraint, performed better than the linear classifier
in almost all tasks (Figure 3). When we increased k of the k-tree from k = 1
to k = 32, we saw a consistent increase in k-tree performance across all tasks
(Figure 4). In the case of the MNISt task, the performance of the 32-tree
was close to the comparable FCNN performance. Surprisingly, the 32-tree
in the FMNIST, EMNIST, and USPS tasks met that of the comparable
FCNN. These findings emphasize the importance for modelers to consider
both dendrites and synaptic input repetitions.

A limitation of this study is the relevance of our computational tasks.
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Although it is hard to know exactly what kind of input a neuron receives from
its presynaptic connections, we do not believe the 1-dimensional vectorized
input we provide our neuron model is biologically plausible. Ordering the
pixel input to these models randomly overall decreases k-tree performance,
implying that the order of the input impacts performance (see Figure S1 in
the Supplementary Material). Further investigation may be needed to explore
how the ordering of the 1-D pixel input might impact performance.

The binary tree structure we chose to constrain an ANN to make the
k-tree makes several assumptions. Each node of the tree is analogous to
a compartment in a dendritic tree, and in biological dendritic trees each
compartment will receive an exclusive set of inputs. Therefore, we chose not
to use convolution or any kind of weight sharing in our model. In addition,
the synaptic weights and inter-node weights are real-valued free parameters,
however the weights analogous to inter-compartmental axial resistances (Rall,
1959; Huys et al., 2006) could only be positive scalar values if biologically
plausible. Future work to address this would be to constrain the free parameter
ranges to be completely positive.

In this study we used an abstracted model to give us insights into the
impacts of biological constraints and properties. After all, these kinds of
optimizations are not currently doable in more realistic models of neurons.
Using this model, we see how nonlinear dendrites increase a neuron model’s
task performance above that of a linear classifier, which serves as a proxy
for models following the point-neuron assumption. Importantly, we see how
by repeating the inputs to this dendrite model we can observe a consistent
increase in task performance. These findings emphasize the importance for
modelers to consider both dendrites and synaptic input repetitions.

Our results may also be relevant for the field of deep learning. The k-trees
we consider are special cases of sparse ANN, wherein there are only 2 inputs
to all nodes after the first layer. These contrast with randomly-made sparse
networks or pruned sparse networks (Frankle and Carbin, 2019), because
they have very severe constraints. It is then surprising that a k-tree could
perform at the level of a comparable FCNN. We would be interested in
future work comparing the performance of binary tree structures, inspired by
biological dendrites, against the performance of less structured sparse ANNs
with comparable edge density.

This study tests the classification performance of a dendrite-complete
neuron model and compares it to a model that follows the point-neuron
assumption, highlighting the importance of considering branching dendrite
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structure and nonlinearities when modeling neurons. We expand this test to
consider the possibility of repeated synaptic inputs in our model, showing
that the model consistently performs better with more repeated inputs to
additional subtrees. We also see that the sparse network neuron model we
designed can reach similar performance to a comparable densely connected
network. Fundamentally, this study is a foray into directly considering a
neuron’s computational capability by training the model to perform complex
tasks using deep learning methodology, which promises to further our insights
into single neuron computation.
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7 Supplementary Material

Figure S1: Permuted and randomized input trials. k-tree performance is
compared to that of a lower bound, LDA, and an upper bound, FCNN. A:
Example of original input setting (top) and permuted input setting (bottom).
B-H: Original input is in black, permuted is in blue, randomized is in purple,
FCNN and LDA are in gray. Randomized input tends to perform lower than
original and permuted input.
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