
Do biological constraints impair dendritic computation?

Ilenna Simone Jones1,* and Konrad Paul Kording1,2

1Department of Neuroscience, University of Pennsylvania
2Department Bioengineering, University of Pennsylvania

*Corresponding author: Ilenna Jones, ilennaj@pennmedicine.upenn.edu

August 12, 2021

Abtract

Computations on the dendritic trees of neurons have important constraints. Volt-
age dependent conductances in dendrites are not similar to arbitrary direct-
current generation, they are the basis for dendritic nonlinearities and they do
not allow converting positive currents into negative currents. While it has been
speculated that the dendritic tree of a neuron can be seen as a multi-layer neural
network and it has been shown that such an architecture could be computation-
ally strong, we do not know if that computational strength is preserved under
these biological constraints. Here we simulate models of dendritic computation
with and without these constraints. We find that dendritic model performance
on interesting machine learning tasks is not hurt by these constraints but may
benefit from them. Our results suggest that single real dendritic trees may be
able to learn a surprisingly broad range of tasks.

1

ar
X

iv
:2

10
3.

03
27

4v
2

 [
q-

bi
o.

N
C

]
 1

1
A

ug
 2

02
1

Introduction

The dominating point-neuron idea (McCulloch and Pitts, 1943) which underlies artificial
neural networks (ANNs) (Lecun et al., 2015; Krizhevsky et al., 2012; Minsky and Papert,
1969) assumes that dendrites are linear integrators of synaptic inputs. However dendrites are
highly nonlinear due to their voltage dependent ion channels (Antic et al., 2010). Detailed
models of dendritic processing thus use multi-compartment modeling with differing levels of
abstraction (Hines and Carnevale, 1997; Izhikevich, 2007) allowing for good models for phe-
nomena such as direction sensitivity (Rall, 1964; Koch et al., 1982) and coincidence detection
(Agmon-Snir et al., 1998; London and Häusser, 2005). However, we do not just want to
ask if a realistic neuron can do one thing, but also to understand the general class of prob-
lems a neuron can solve. In this vein, the perceptron learning rule has been used to train a
biophysical multi-compartment model to do binary classification tasks (Moldwin and Segev,
2019). We know that real neurons can solve interesting problems, e.g. the XOR task (Gidon
et al., 2020), which requires at least two layers in an ANN. Indeed, recent computational
work (David et al., 2019) has shown that a single dendritic tree can only be simulated with a
many layered neural network of limited width. From these, it is clear that a dendrite can do
more than linearly integrate, but we must also consider that there are important biological
constraints. This raises the question of how the biological properties of dendrites affect their
computational capabilities.

Owing to their rich nonlinear properties, real dendrites have been seen as equivalent to a
multi-layer ANN (Poirazi et al., 2003b,a; Mel, 2016; Poirazi and Papoutsi, 2020). Specifically,
it is generally seen as a multi-layer ANN that is constrained to have a tree structure where
inputs are successively combined with one another on the way to the soma where the spike
generator sits. Inspired by these ideas, our own past work modeled a single neuron as using
a binary tree structure (Jones and Kording, 2021). These ANN neuron models utilize one
important biological constraint, the tree structure of the dendritic tree, and test its impact
on neuronal output and computation respectively. However, these studies only looked at a
small set of biological constraints.

This lack of biological constraints results in models abstracted away from biological reality.
Here we focus on three of these abstractions in our own tree-structured single neuron model
(Jones and Kording, 2021) and identify ways it could be more biologically plausible. First,
its nonlinear activation function is a Leaky Rectified Linear Unit (LReLU). Though LReLU
may be a widely used activation function in many successful deep ANNs (Nair and Hinton,
2010; Krizhevsky et al., 2012; Xu et al., 2015; Maas et al., 2013), perhaps we can rely on
voltage-dependent ion channel nonlinearities to identify a better activation function. Second,

2

its inputs are directly received by the model as values between 0 and 1. Perhaps we can
make input more realistic by mapping this input through a conductance-based synaptic
nonlinearity in the units of millivolts (Koch, 1999). Third, its weight parameters can be both
positive and negative, allowing the activations traveling through the tree to flip signs. The
weights in the binary tree structure of our model would be analogous to axial conductance
between compartments (Hines and Carnevale, 1997), and so an improvement could be to
constrain these weights to be non-negative (Rall, 1967). These are ways we can move a
highly abstracted model closer toward biological realism. However, we suspect that imposing
further biological constraints may yield differing performance results.

Here we use these suggested improvements as three biological constraints for our binary
tree model: synaptic input nonlinearities, voltage-gated-ion-channel-derived dendritic nonlin-
earities, and non-negative axial conductance weights. We observe the impacts of introducing
each constraint by training and testing the binary tree model on 7 different binary classifica-
tion machine learning datasets. We find that the dendritic nonlinearity activation function
introduced performs as well if not better than other typical activation functions. We find
that synaptic input constraints generally do not limit or expand computation performance.
Interestingly we see that the non-negative weight constraint limits performance in low multi-
synaptic-input cases, but the combination of this non-negative weight constraint and the
synaptic input constraint eliminates this limitation. Lastly, we find that the binary tree
model with all three constraints performs as well or better than the model without these
constraints. In conclusion, implementing these constraints fulfills the dual goal of creating a
more biologically realistic binary tree neuron model and showing us that these combined con-
straints don’t limit, and may actually improve, the model’s computational capability. This
suggests real dendritic trees may be able to perform a broad range of complex functions.

Background

Local dendritic dynamics

Neuroscience has a rich set of methods for the simulation of neurons, based on cable equations
with an addition of a host of neuron-specific knowledge. The resulting simulations can
generate the time-varying activities of a neuron in response to arbitrary stimuli. Here we
use an approximation that is different in two ways. First, we only want to consider constant
inputs. Second, we only want to ask if the voltage will keep going up and a spike will result
and we are not interested in the dynamics of the spike itself. For those cases we will make
a steady state approximation for currents going from the periphery towards the soma. This
dendritic nonlinearity or activation function, which we call the NaCaK function (as it is

3

meant to capture sodium, calcium, and potassium currents), is but one of many potential
approaches to representing the nonlinear local dendritic dynamics.

When we have a node in the neuron there will be currents coming in from the parent
dendritic branches (which have currents I1 and I2), we will have local sodium (INa), calcium
(ICa), and potassium (IK) currents, we will have the current relating to charging the local
capacitance (IC), and currents going towards the soma (Iout),

Itotal = I1 + I2 + INa + ICa + IK + IC − Iout. (1)

For the maximal conductances (¯gNa, ¯gCa, ḡK) and current-voltage (IV) curves of sodium
(Hodgkin and Huxley, 1952), potassium (Doiron et al., 2001), and calcium (Miyasho et al.,
2001) channels there exists an extensive literature. We used IV curves that were derived
from biophysical simulations of each ion channel using BRIAN2 (Branco and Häusser, 2010),
wherein the peak current was recorded for a range of voltage clamp settings. Given the
current peaks for these ion channels occurred near instantaneously (within 1 millisecond)
and we assume we are only dealing in local steady state dynamics. We then fit continuous
functions to each of the IV curves, yielding the following equations,

fNa(V) =
0.0878(113.68mV− V)

1mV + exp(6.39mV− V/8.98)
(2)

fCa(V) =
0.129(69.62mV− V)

1 + exp(−4.40mV− V/4.25)
(3)

fK(V) =
−2.23mV

0.436mV + exp(−0.132(V − 16.74mV))
. (4)

We thus have a set of meaningful functions for local currents that form the NaCaK function.
The dynamics on the dendritic tree are complex and time-varying, and contain spiking

dynamics. Instead of simulating such a complex model we will use a very simple approxima-
tion:

V ≈ 1

K
(g1V1 + g2V2 + ¯gNafNa(V0) + ¯gCafCa(V0) + ḡKfK(V0)). (5)

We set ¯gNa, ¯gCa, and ḡK to equal 1, and 1
K

= 0.5 in our model.

4

Our dendritic nonlinearity function, the NaCaK function, takes on the role of the ac-
tivation function in more traditional ways of conceptualizing dendrites as neural networks
(Poirazi et al., 2003a; Jones and Kording, 2021). Our derivation of this result of course made
problematic assumptions about how to solve the relevant implicit equations. Another way of
seeing the NaCaK function is simply a way of conceptually capturing the nonlinear effects
induced by the three channel types.

Local synaptic dynamics approximation derivation

Just like in the case of the overall currents and local nonlinearities above, we will approximate
the synapse properties, which are the input layer in our model. Using standard biophysi-
cal components, we can derive the steady state voltage by considering capacitative (IC),
membrane (IR), excitatory (Ie), inhibitory (Ii), leak (Ileak), and "injected" (Iinj) currents,

Itotal = IC + IR + Ie + Ii + Ileak + Iinj. (6)

We can replace these current variables with their biophysical terms, while also ignoring
membrane currents given the area of a synapse is small. For simplicity, both excitatory and
inhibitory currents are included in the same synapse, so this formulation does not follow
Dale’s law. Iinj = 0 in this case as well,

Itotal = C
dV

dt
+ ge(V − Ee) + gi(V − Ei) + g0(V − E0). (7)

The conductances ge and gi are functions of time and could be approximated from the
slope of an I-V plot of peak currents of excitatory and inhibitory channels (Koch, 1999). The
positive values of ge and gi will be calculated using a set of parameters α that characterize
each synapse, can be trained and define the conductances:

gp(x) = exp(α1px+ α2p). (8)

Where the input variable x, which is between 0 and 1, can be interpreted as probability
of vesicular release. The parameter α1p can be interpreted as an approximation of num-
ber of quantal release sites or vesicle size. The parameter α2p can be interpreted as peak

5

conductance as a result of triggering post-synaptic receptors, which would be a function of
however many post-synaptic receptors are present. This formulation is similar to that which
is elaborated on in Koch (1999) (p. 91). However, it is different because it is an exponential
expression, which we used to force the synaptic conductance to be positive and differentiable.
Lastly, g0 is a trainable parameter, which means there are 5 trainable parameters for each
synapse (α1e, α2e, α1i, α2i, and g0). These components in this formulation add more synaptic
parameters (degrees of freedom) replacing what is typically assumed to be a scalar value.

The steady state convergence voltage where dV
dt

= 0 can then be calculated:

V∞ =
geEe + giEi + g0E0

ge + gi + g0
. (9)

We set Ee, Ei and E0 to be 50 mV, -70 mV and -65 mV to correspond to excitatory,
inhibitory, and leak channels at the synapse.

We thus have a meaningful approximation of the effect of a synapse on the downstream
dendrites.

Results

In this paper we modify the previously established ANN dendritic neuron model, called the
k-tree (Jones and Kording, 2021), and add three more dendritic constraints to it in a dual
effort of making it more biologically plausible and observing the impact of these constraints
on model performance when they are introduced. We introduce NaCaK nonlinearity (Figure
1B, Figure S1), which is a linear combination of sodium, calcium, and potassium IV curves
that map voltage input to current output. We introduce a synapse nonlinearity (Figure 1C),
which is a steady state synaptic voltage response as a function of a continuous value that
represents vesicular dynamics. This synapse nonlinearity output is in millivolts. Lastly, we
introduce an axial conductance weight constraint (Figure 1D) where the weight parameters
between each node is constrained to be non-negative since in neuron models conductance is
a scalar value. As a control, we use a parameter-size-comparable 2-layer Fully Connected
Neural Network (FCNN) dense network to see the impact of the sparse binary tree structure.
We also have multi-synaptic-input repetition conditions to see the impact of repeated inputs
to different dendritic sub-trees. (Figure 1A). Implementing these biological constraints and
comparing their presence with their absence allows us to observe the computational impact
of these constraints.

6

Figure 1: Binary k-tree Model and Fully Connected Neural Network (FCNN) Control Model
Containing Three Biological Constraints. A) Blue nodes apply an optional synaptic non-
linearity to the input. White nodes apply an optional dendritic nonlinearity. Black lines
connecting the nodes are weights that are optionally constrained to be non-negative. The
value k determines how many sub-trees of identical input are repeated in the model as an
analogy to repeated synaptic inputs on different dendritic trees. The value h corresponds to
the number of nodes in the hidden layer of the FCNN. B) Comparison of LReLU activation
function and NaCaK activation function. C) Comparison of model without synapse nonlin-
earity and with synapse nonlinearity. D) Comparison of model weights without and with the
non-negative weight constraint.

NaCaK nonlinearity outperforms other nonlinearities in k-tree model

In densely connected ANNs, Rectified Linear Unit (ReLU) and LReLU have been accepted
to improve model performances. However since we are using a sparsely connected model
architecture, the k-tree, we are interested in seeing if the NaCaK function differentially
impacts k-tree model performance. To do this we tested the k-tree performance on various
datasets with the NaCaK activation function and compare this performance to the ReLU,
LReLU, Sigmoid, and Swish activation functions. We find that the NaCaK nonlinearity
outperforms ReLU, LReLU, and sigmoid activation functions in 5 out of 7 datasets in the k-
tree model (Figure 2A-E, Figure S3A-E). Interestingly, the swish nonlinearity also performs

7

Figure 2: Comparing Nonlinear Activation Functions for the Dendrite Nodes in the k-tree For
Each Dataset. Architecture ranges from low input multi-synaptic input repetitions (k=1) to
high input repetitions (k=32) and mean accuracy of each model is displayed with standard
error bars. Number of trials ranges from 1-10, and trial accuracy was omitted if the training
was deemed to fail (accuracy threshold 0.55). Table 2 lists trial counts. Red: Rectified Linear
Unit (ReLU), Pink: LReLU, Purple: Sigmoid, Green: Swish, Grey: NaCaK Nonlinearity

about as well or better than the NaCaK nonlinearity in the k-tree model. (Figure 2A-F,
Figure S3A-F). For the FCNN model, ReLU and LReLU architectures performed better
than all other nonlinearities in 4 out of 7 datasets (Figure S2A-D,G, Figure S4A-D,G). These
results show that the NaCaK and swish functions paired with the binary tree architecture
perform better than other nonlinearities.

Addition of synaptic input nonlinearity can improve performance of

binary tree model

Without synapse nonlinearity mapping of the inputs, the k-tree model is receiving inputs
that are not biologically realistic. We want to see if using the synapse nonlinearity constraint
(Figure 1C), which nonlinearly maps the input to realistic millivolt units, impacts k-tree
model computation. In order to show this, we implement a steady-state voltage conception
of synaptic dynamics in order to map the input values to synaptic voltage output. Every input
corresponds to a differing synaptic nonlinearity function. We allow the synaptic nonlinearities
to have 5 different trainable parameters (α1e, α2e, α1i, α2i, g0) instead of simply 1 trainable
weight. We thus compare the densely connected FCNN and the binary tree models under
the synapse or no-synapse conditions, all using the NaCaK nonlinearity, in order to observe

8

Figure 3: Comparing k-tree and FCNN models With or Without Synapse nonlinearity. Archi-
tecture ranges from low input multi-synaptic input repetitions (k=1) to high input repetitions
(k=32) and mean accuracy of each model is displayed with standard error bars. Number of
trials ranges from 1-10, and trial accuracy was omitted if the training was deemed to fail (ac-
curacy threshold 0.55). Table 3 lists trial counts. Red: FCNN with Synapses, Pink: FCNN
without Synapses, Black: k-tree with Synapses, Grey: k-tree without Synapses.

their impacts on computation.
Given that we look at 7 datasets, each of which belies a different result for how the

presence of the synapse nonlinearity impact computation, it is difficult to draw a general
conclusion from these results. Before considering the synapse condition, it is important to
acknowledge that for the MNIST, FMNIST, KMNIST and EMNIST datasets, the binary tree
outperformed the FCNN in the high multi-synaptic input repetition conditions and matched
it in the low repetition conditions(Figure 3A-D, Figure S5A-D). We had assumed that the
densely connected FCNN with a similar number of parameters as the sparsely connected
k-tree would always have better performance. This result shows that this assumption is not
the case. Also, if we are to simply compare the k-tree NaCaK conditions, then in MNIST and
EMNIST datasets, the synapse nonlinearity architecture improves performance compared to
the no-synapse architecture in the high-repetition conditions (Figure 3A,D, Figure S5A,D).
The opposite may be seen in the FMNIST dataset (Figure 3B, Figure S5B), and it there is
no difference in the KMNIST, SVHN, USPS, and CIFAR datasets (Figure 3C,E-G, Figure
S5C,E-G). In the MNIST and KMNIST datasets, the k-tree performs better than the FCNN
regardless of the presence of the synapse (Figure 3A,C, Figure S5A,C). In the FMNIST
dataset, k-tree without synapse performs better than both FCNN conditions (Figure 3B,
Figure S5B). From this variety of results, we can say that the combination of a binary tree

9

Figure 4: Comparing k-tree and FCNN models With or Without the Non-negative Weight
Constraint. Architecture ranges from low input multi-synaptic input repetitions (k=1) to
high input repetitions (k=32) and mean accuracy of each model is displayed with standard
error bars. Number of trials ranges from 1-10, and trial accuracy was omitted if the training
was deemed to fail (accuracy threshold 0.55). Table 4 lists trial counts. Orange: k-tree with
Synapses and with Non-negative weights, Yellow: k-tree without Synapses and with Non-
negative weights Red: FCNN with Synapses, Pink: FCNN without Synapses, Black: k-tree
with Synapses, Grey: k-tree without Synapses. Top graphs in A-G omit the accuracies of
the k-tree without synapses and with non-negative weights in order to resolve the lines with
higher accuracies. Bottom graphs include this omitted set of accuracies.

constraint and a synaptic nonlinearity does not worsen model performance relative to all other
conditions, and even has the potential to improve model performance above the supposed
upper bound set by the FCNN model in higher-repetition cases.

A k-tree model with all biological constraints performs as well as or

better than a model missing any one constraint

In the binary tree model, the weight parameters connecting each node with downstream nodes
can be argued to be analogous to axial conductances that is often found in multi-compartment
models of neurons (Figure 1D). Conductance is a scalar value, therefore its important to
observe the impact of introducing the non-negative weight constraint in our specialized ANN

10

model. In order to observe this constraint’s impact on computation, we implement the k-
tree with NaCaK nonlinearity architectures with or without synapse nonlinearities, and add
the condition of constraining the model to have non-negative weights only. In Figure 4 we
compare all previous with or without synapse conditions to these new conditions.

We thus show that in all datasets, the non-negative k-tree without synapse performs
very poorly in the low-multi-synaptic input repetition regime, or does not perform above
our training failure accuracy threshold (0.55) at all (Figure 4A-G: Bottom, Figure S5A-
G). Importantly, this should be compared to the non-negative k-tree with synapses, which
performs at a level comparable to other conditions (Figure 4, Figure S5). The non-negative k-
tree with synapses performs at the level or better than of the positive and negative k-tree with
synapses (Figure 4, Figure S5). In MNIST, KMNIST, and CIFAR10 conditions, the model
with all constraints outperform FCNN with or without synapses (Figure 4A,C,G, Figure
S5A,C,G) From this we can conclude that, using the k-tree NaCaK nonlinearity architecture,
the combination of the presence of synapses and non-negative weights performs much better
than the absence of synapses with non-negative weights. Overall, the most realistic k-tree
model, with NaCaK nonlinearity, synapse nonlinearity and non-negative weights, performs
at the level or better than a model missing any one of these constraints.

Experimental Procedures

Much of this section can be derived from Jones and Kording (2021), and has been modified
for the purpose of this study.

Computational Tasks

Knowing that the output of a neuron is binary (presence or absence of an action poten-
tial), we chose to train our neuron model on a binary classification task. Using standard,
high-dimensional, computer vision datasets, we used linear discriminant analysis (LDA) lin-
ear classifier to determine which 2 classes within each dataset were least linearly separable
through training the LDA linear classifier and testing it on pairs of classes (Table 1). We
used MNIST (Lecun et al., 1998), Fashion-MNIST (Xiao et al., 2017), EMNIST (Cohen et al.,
2017), Kuzushiji-MNIST (Clanuwat et al., 2018), CIFAR-10 (Krizhevsky, 2009), Street View
House Numbers (SVHN) (Goodfellow et al., 2014), and USPS (Hastie et al., 2001) datasets.

11

MNIST FMNIST EMNIST KMNIST CIFAR10 SVHN USPS

0.8753 ± 0.0120 0.6750 ± 0.0108 0.5821 ± 0.0180 0.6790 ± 0.0164 0.5254 ± 0.0069 0.5186 ± 0.0102 0.8362 ± 0.0306

Table 1: Linear Classifier Performance on Machine Learning Datasets

Controls

The control we use is a fully connected neural network (FCNN). The 2-layer FCNN is a
comparable reference to see if k-tree performance meets or exceeds that of a densely connected
network. The hidden layer of the FCNN is equal to twice the number of trees (2k) in the
k-tree it is compared to and its output layer has 1 node.

Data Preprocessing

We used datasets from the torchvision (version 0.5.0) python package. We then padded the
28 by 28 resolution images with zeros so that they were 32 x 32, and flattened the images
to 1-D vectors. We then split the shuffled training set into training and validation sets (for
MNIST, the ratio was 1:5 so as to let the validation set size match the test set), Then we
split the resultant shuffled training set and validation set into 10 independent subsets. Each
subset was used for a different cross-validation trial.

Model Architecture

Using Pytorch (version 1.6.0), we designed the k-tree model architecture to be a feed forward
neural network with sparse binary-tree connections. The weight matrices were implemented
as simulated sparse tensors using the SparseLinear package created by rain-neuromorphics
(updated August 18, 2020). Each node received 2 inputs and produces 1 output. To account
for the sparsification, we altered the initialization of the weight matrices: we used standard
“Kaiming normal” initialization with the gain of 1/density of the weight matrices. All nonzero
weights were trained in model optimization. Lastly, the leak hyperparameter for LReLU was
set to 0.01.

Model Training

The model, inputs, and labels were loaded onto a Nvidia GeForce 1080 GPU using CUDA
version 10.1. The batch size was 256. Early stopping was used such that after 60 epochs
where no decrease in the validation loss is observed, training is stopped. We allowed the
parameters of sparse linear layers of the k-tree and the synapse nonlinearity parameters to

12

train. We did not allow the NaCaK conductance parameters (¯gNa, ¯gCa and ḡK) to train. In all
conditions, loss was calculated using mean binary cross entropy loss. In the k-tree condition
with the synapse layer implemented, we also added a mean hinge loss when activations at
any node were outside of the range of -70 and 50. We used the python library Hyperopt,
which is based on the Tree-structured Parzen Estimator algorithm, in order to optimize the
learning rates used for our Adam optimizer for each dataset and constraint condition. Each
train-test loop was run for 10 trials with a different training subset each trial and the same
test set every trial. Trial averages and standard errors were then calculated, and p-values
were determined using two-tailed student’s t-test (Figure S3-S5).

Ion Channel Model Parameters

The NaCaK function was built out of the IV curves of sodium (Hodgkin and Huxley, 1952),
calcium (Miyasho et al., 2001), and potassium (Doiron et al., 2001) channels. The IV curves
were derived from biophysical simulations of each ion channel using BRIAN2 (Branco and
Häusser, 2010), wherein the peak current was recorded for a range of voltage clamp settings.
The parameters for these IV curves are depicted below.

The sodium channel (Hodgkin and Huxley, 1952) model had maximum conductance ¯gNa =

120mS and a reversal potential ENa = 115mV.

Im = gNam
3h(V − ENa) (10)

αm =
1

exp(25mV−V
10mV)

βm = 4 exp(
−V

18mV)

αh = 0.07 exp(
−V

20mV
)

βh =
1

1 + exp(30mV−V
10mV)

.

The calcium channel (Miyasho et al., 2001) model had maximum conductance ¯gCa =

100mS and a reversal potential ECa = 135mV.

13

Im = gCamh(V − ECa) (11)

αm =
2.6

1 + exp(V+21mV
−8mV)

βm =
0.18

1 + exp(V+21mV
−8mV)

αh =
0.0025

1 + exp(V+40mV
8mV)

βh =
0.19

1 + exp(V+50mV
−10mV)

.

The potassium channel (Doiron et al., 2001) model had maximum conductance ḡK =

100mS and a reversal potential EK = −88.5.

Im = gKm
3h(V − EK) (12)

m∞ =
1

1 + exp(V
−19mV)

τm = 0.8

h∞ =
1

1 + exp(V+3mV
40mV)

τh = 1.5.

Discussion

Here we introduced three important biological constraints to models of hierarchical dendritic
computation. For each of the constraints, we asked how it impacted the model’s computa-
tional performance on several machine learning tasks. We found that the NaCaK nonlinear-
ity performs as well if not better than the commonly used deep learning activation functions
ReLU, LReLU, and sigmoid nonlinearities. Implementing synapse nonlinearities while using
the NaCaK nonlinearity does not worsen binary tree model performance. When using the this
nonlinearity, constraining the weight parameters to be non-negative can greatly penalize per-
formance in low multi-synaptic input repetition regimes, but implementing synapses along

14

with this constraint rescues model performance. The combination of all three constraints
makes a model that performs as well as if not better than models without constraints. These
constraints capture many limitations of real dendrites, suggesting that neurons with real
dendrites may be able to actually solve the kinds of complex machine learning problems used
in the deep learning field.

Limitations

Our dendritic binary tree model is technically a feed-forward ANN, which is an abstrac-
tion away from the temporally dynamic nature of neurons (Hines and Carnevale, 1997). In
order to allow our model to work within this feed-forward context, we used a steady-state
synaptic voltage nonlinearity approximation instead of real temporal conductance dynamics.
Important neuronal phenomena, like backpropagating action potentials or dendritic direction
selectivity (London and Häusser, 2005) cannot be reproduced using this model. In addition,
inputs to neurons have a temporal dimension as well, so the input we use for this feed-forward
model is not biologically plausible. An addition of real recurrent dynamics could render our
model similar to those often implemented in compartmental modeling (Hines and Carnevale,
1997; Bower et al., 2013). While it would make conceptualization harder, implementing re-
current connections and using input with a time dimension could produce a more biologically
plausible model and could be a very interesting constraint to add to the model.

The voltage-gated ion channel derived function, the NaCaK function, is a linear weighted
sum of sodium, calcium, and potassium I-V curves where the weights of the sum are analogous
to maximal conductance, which is a function of ion channel density. A limitation of this
conception of dendritic nonlinearity is that we chose only 3 out of many ion channels that are
present in a dendritic tree of any one neuron. We chose representative sodium (Hodgkin and
Huxley, 1952), potassium (Doiron et al., 2001), and calcium (Miyasho et al., 2001) channels.
It is an open question which ion channels would be best for making a general dendrite
nonlinearity for the purposes of a model like the one we used. We also did not try to model
any specific neuron type, so it would be very interesting to ask how distinct neuron types
could support the computations we are analyzing. Follow-up work could be more specific
about the kinds of neuron model they choose to constrain the model to.

Another limitation of this conception of dendritic nonlinearity is that the ratio of these
ion channel density weights is, unrealistically, equal. Computational studies (Huys et al.,
2006; Hay et al., 2011) have found that that not only is there no even ratio of these ion
channels, this ratio is most certainly not consistent across the entirety of the morphology of
the dendritic tree. Future work that allows these weights to be optimized might be fruitful for

15

possibly explaining ion channel density distributions in intricate dendritic morphologies. A
combination of more realistic morphologies than the k-tree and a learnable NaCaK function
for each node might introduce more biologically relevant degrees of freedom that could impact
model computational performance.

High count multi-synaptic input repetitions to the terminals of separate dendritic sub-
trees is a theoretical extreme of what real neurons are doing. These theoretical multi-synaptic
boutons (MSB) assume that the repeated synaptic inputs go to different dendritic sub-trees.
The literature shows support of same-branch MSBs and different-branch MSBs (Kincaid
et al., 1998; Jones et al., 1997), but it is unclear if different-branch MSBs are to dendritic
branches from completely different dendritic sub-trees. In addition, much evidence shows that
dendritic trees are highly asymmetric (Ramon y Cajal, 1894), with synapses being at terminal
nodes along lengths of dendritic node chains. It has been shown that these asymmetric trees
are difficult to train on ML tasks using LReLU nonlinearities (Jones and Kording, 2021).
Perhaps this work can inspire further work returning to this asymmetric tree architecture
using the biological constraints we used in order to see if that allows the architecture to
train better. In the context of the symmetric binary tree we use with multiple sub-trees, it
may be more biologically relevant to look at performances of the low and medium repetition
conditions.

The input-output functions from the deep learning literature that we use here to quantify
computational capacity are a bad approximation to the problems solved by real neurons.
The literal input-output (I/O) function of mapping an input of a 1-D, complex pixelated
image to the presence or absence of an action potential is clearly biologically unrealistic. For
example, in the visual system, the outputs of LGN neurons would have different structure
(DiCarlo et al., 2012). However, we use this simple I/O function to explore the computational
possibilities of an individual neuron. It would be interesting to see if the real functions
computed by neurons are easier or harder.

In this study we used the backpropagation of error learning algorithm. Real neurons may
learn this way or in entirely different ways and this is an active and controversial area of study
(Lillicrap et al., 2020). A critique of the backpropagation of error algorithm is that it remains
unobserved how the neuron achieves error feedback to the synapses, allowing the synapses to
change based off of a gradient signal (Lillicrap et al., 2020). Alternatives to backpropagation
of error, such as feedback alignment (Lillicrap et al., 2016), predictive coding (Millidge et al.,
2020), or equilibrium propagation Scellier and Bengio (2017), could be used in this testing
context. Further work may also show how plasticity rules in combination with third-factor
signaling (Richards and Lillicrap, 2019) could possibly provide the error feedback a single
neuron needs to adjust its synaptic weights. As for plasticity of dendritic branches, they

16

are most plastic during early neuron development (Koleske, 2013). Work may be needed to
make models that distinguish between fully plastic neurons during early development and
mature neurons which only have plastic synapses. Further work like this on neuron model
learnability is needed in order to evaluate potential learning models in the future.

It is possible now to directly study dendritic integration in real neurons, although it
is hard to do justice to their high-dimensional inputs (Spruston, 2009). One can record
electrophysiologically dendrite-to-soma firing I/O functions that have the specific constraint
of a multi-dendritic input corresponding to an action potential output. Further work using
2-photon microscopy, glutamate uncaging, dendritic voltage dyes, and electrophysiological
recording could be useful in generating the kind of I/O function data that can produce further
constraints on dendritic computation. It would be very interesting to calibrate neurons
against physiological data and then ask about their computational limitations.

Contributions

We found that the NaCaK nonlinearity and swish nonlinearity performed the best in the
sparse binary tree architecture. The NaCaK nonlinearity relates to the transfer function
literature that has shown that smooth functions that are locally similar to ReLU tend to
perform well (Xu et al., 2015). We also point out that the local properties of the neuron
share some aspects of ResNets (Xie et al., 2017; He et al., 2016). Without local nonlinearities,
a node simply copies its parents, producing the unity function. ResNets have the capacity
to have better performances in machine learning benchmark tasks than a traditional multi-
layer perceptron (Xie et al., 2017). Also, the nonlinear component of the NaCaK function
contributes gradients (Figure S1) used by the backpropagation of error algorithm used to
train the model, allowing the neuron model to learn the binary classification task more
effectively than a completely linear model (See and compare performances to Table 1). These
components of the NaCaK function show that producing learning systems that are more
similar to those of real neurons may benefit from our considerations, e.g. for the design of
specialized hardware. Interestingly, the sigmoid nonlinearity generally did worse than the
NaCaK nonlinearity, suggesting that the brain has evolved a good transfer function.

The three constraints we implemented either did not worsen or improved the performance
of our dendritic binary tree model in mid-to-high multi-synaptic repetition regimes. In low
repetition regimes, binary trees using NaCaK nonlinearity and the non-negative weight con-
straint suffered in performance accuracy without the synapse nonlinearity. We suggest two
potential reasons for why the synapse nonlinearity rescued performance. First, the synapse
nonlinearity significantly expands the model size by introducing 4 more parameters per in-

17

put. The synapse nonlinearity merely represents a few degrees of freedom that exist in a real
synapse. (Koch, 1999) This increase in synapse complexity in contrast to the more simple
traditional way of representing synaptic strength with a scalar could be a reason why perfor-
mance is rescued in this case. Second, it is important to note that the synapse nonlinearity
maps the input, which ranges from 0 to 1, to synaptic voltage activation in millivolts, and
the change in range of the NaCaK nonlinearity is across a wide domain between -70 and 50
mV (Figures S1, S6, and S7). Without the synapse nonlinearity, the activation in the binary
tree would likely only sit close to 0. Having both the range of activations between -70 and 50
that the synapse nonlinearity enforces and the NaCaK nonlinearity with a matching range
likely takes full advantage of the nonlinearities as activation travels down the binary tree.
Though it is still unclear why non-negative weight constrained models need this matching
in order to perform well, this may be why the combination of all three constraints leads to
consistent or better performance.

Using the biological constraints we introduced a variety of free parameters analogous
to properties in real neurons. Upon further analysis we found that in a model trained on
MNIST with all three biological constraints the synaptic axial conductance weights (Figure
S7) were close to the ranges found in Araya et al. (2014). The dendritic axial conductance
weights (Figure S8A) were similar in magnitude. The resultant activations were also within
the expected range of between -70 and 50 mV (Figures S7 and S8B,C). These results convince
us that the model, when given biological constraints, yields biologically relevant behavior.

We take the time here to discuss the term "constraint." Given that our formulation of the
synapse nonlinearity technically expands the size of our model, it may be seen as inappro-
priate to call the synapse nonlinearity a constraint. Interestingly, the machine learning field
will tend to view the number of parameters as main constraint (Schölkopf et al., 2002) while
the neuroscience field may rather view the existence of the channels that exist with their
biological properties as a constraint - after all there are simply computations that are impos-
sible under the biological constraints (e.g. those where the membrane voltage is >100mV).
As such, we do not agree with just viewing the number of parameters as a constraint. Before
constructing a synapse in a model and before knowing how that construction impacts model
performance, we would be agnostic about whether the property limits or enhances model
performance. In addition, we call this property a constraint because of its grounding in ob-
served reality that abstracted models do not include or engage with. Therefore we call the
synaptic nonlinearity a constraint in reference to it grounding or "constraining" our model
to biological realism.

We introduced three biological constraints to an abstracted computational model of a
neuron with dendrites, and observed the impacts of these constraints on computational per-

18

formance on well-defined ML tasks. We found that NaCaK nonlinearity which approximates
real dendrite physiology clearly outperforms other nonlinearities. The addition of a synapse
nonlinearity and non-negative weight constraint does not worsen performance on ML tasks,
and in some cases improves performance. This more biologically plausible model can be
trained on well-defined tasks, which opens further possibilities of exploring what neurons are
capable of computationally. Our findings contribute to the theoretical evidence that dendritic
computation can approximate complex nonlinear I/O functions, even with the constraints
imposed by the components of dendrites.

Acknowledgments

We would like to acknowledge the members of the Kording Lab, specifically Roozbeh Far-
hoodi, Ben Baker and Ari Benjamin, for help in the development of this project. This work
was funded by grants from the National Institute of Health, National Science Foundation,
and Howard Hughes Medical Institute.

Code

The code for this project can be found at the following github repository:
https://github.com/ilennaj/ktree_constraints

19

Bibliography

Agmon-Snir, H., Carr, C. E., and Rinzel, J. (1998). The role of dendrites in auditory coinci-
dence detection. Nature, 393:268–272.

Antic, S. D., Zhou, W. L., Moore, A. R., Short, S. M., and Ikonomu, K. D. (2010). The
decade of the dendritic NMDA spike. Journal of Neuroscience Research, 88(14):2991–3001.

Araya, R., Vogels, T. P., and Yuste, R. (2014). Activity-dependent dendritic spine neck
changes are correlated with synaptic strength. Proceedings of the National Academy of
Sciences of the United States of America, 111(28).

Bower, J. M., Cornelis, H., and Beeman, D. (2013). GENESIS, The GEneral NEural SImu-
lation System, pages 1–8. Springer New York, New York, NY.

Branco, T. and Häusser, M. (2010). The single dendritic branch as a fundamental functional
unit in the nervous system.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and Ha, D. (2018).
Deep Learning for Classical Japanese Literature. Advances in Neural Information Process-
ing Systems, pages 1–8.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. (2017). EMNIST: Extending MNIST to
handwritten letters. Proceedings of the International Joint Conference on Neural Networks,
2017-May:2921–2926.

David, B., Idan, S., and Michael, L. (2019). Single Cortical Neurons as Deep Artificial Neural
Networks. bioRxiv.

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. (2012). How does the brain solve visual object
recognition? Neuron, 73(3):415–434.

Doiron, B., Turner, R. A. Y. W., Maler, L., and Turner, R. W. (2001). Model of Gamma
Frequency Burst Discharge Generated by Conditional Backpropagation. Journal of Neu-
rophysiology, 86(4):1523–1545.

Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., Holtkamp,
M., Vida, I., and Larkum, M. E. (2020). Dendritic action potentials and computation in
human layer 2/3 cortical neurons. Science (New York, N.Y.), 367(6473):83–87.

20

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014). Multi-digit num-
ber recognition from street view imagery using deep convolutional neural networks. 2nd
International Conference on Learning Representations, ICLR 2014 - Conference Track
Proceedings, pages 1–13.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning.
Springer-Verlag.

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011). Models of neocorti-
cal layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active
properties. PLoS Computational Biology, 7(7).

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016-Decem:770–778.

Hines, M. L. and Carnevale, N. T. (1997). The NEURON simulation environment. Neural
computation, 9(6):1179–209.

Hodgkin and Huxley (1952). A quantitative description of membrane current and its appli-
cation to conduction and excitation in nerve. J Physiology, 1117:500–544.

Huys, Q. J. M., Ahrens, M. B., and Paninski, L. (2006). Efficient Estimation of Detailed
Single-Neuron Models. Journal of Neurophysiology, 96(2):872–890.

Izhikevich (2007). Dynamical Systems in Neuroscience. MIT Press.

Jones, I. S. and Kording, K. P. (2021). Might a single neuron solve interesting machine learn-
ing problems through successive computations on its dendritic tree? Neural Computation,
In Press.

Jones, T. A., Klintsova, A. Y., Kilman, V. L., Sirevaag, A. M., and Greenough, W. T. (1997).
Induction of multiple synapses by experience in the visual cortex of adult rats. Neurobiology
of Learning and Memory, 68(1):13–20.

Kincaid, A. E., Zheng, T., and Wilson, C. J. (1998). Connectivity and convergence of single
corticostriatal axons. Journal of Neuroscience, 18(12):4722–4731.

Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons.
Oxford University Press, New York.

21

Koch, C., Poggio, T., and Torre, V. (1982). Retinal ganglion cells: a functional interpretation
of dendritic morphology. Philosophical transactions of the Royal Society of London. Series
B, Biological sciences, 298(1090):227–263.

Koleske, A. J. (2013). Molecular mechanisms of dendrite stability. Nature Reviews Neuro-
science, 14(8):536–550.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. ArXiv.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Systems,
8:713–772.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied
to document recognition. proc. of the IEEE.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communica-
tions, 7:1–10.

Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., and Hinton, G. (2020). Backpropa-
gation and the brain. Nature Reviews Neuroscience, 21(6):335–346.

London, M. and Häusser, M. (2005). Dendritic Computation. Annual Review of Neuroscience,
28(1):503–532.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. in ICML Workshop on Deep Learning for Audio, Speech and
Language Processing, 28.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4):115–133.

Mel, B. (2016). Toward a simplified model of an active dendritic tree. In Stuart, G. J.,
Spruston, N., and Häusser, M., editors, Dendrites. Oxford Scholarship Online.

Millidge, B., Tschantz, A., and Buckley, C. L. (2020). Predictive coding approximates back-
prop along arbitrary computation graphs. arXiv, pages 1–25.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.

22

Miyasho, T., Takagi, H., Suzuki, H., Watanabe, S., Inoue, M., Kudo, Y., and Miyakawa, H.
(2001). Low-threshold potassium channels and a low-threshold calcium channel regulate
Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: A modeling study. Brain
Research, 891(1-2):106–115.

Moldwin, T. and Segev, I. (2019). Perceptron learning and classification in a modeled cortical
pyramidal cell. bioRxiv, page 464826.

Nair, V. and Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann
Machines. Proceedings of the 27th International Conference on Machine Learning.

Poirazi, P., Brannon, T., and Mel, B. W. (2003a). Arithmetic of subthreshold synaptic
summation in a model CA1 pyramidal cell. Neuron, 37(6):977–987.

Poirazi, P., Brannon, T., and Mel, B. W. (2003b). Pyramidal neuron as two-layer neural
network. Neuron, 37(6):989–999.

Poirazi, P. and Papoutsi, A. (2020). Illuminating dendritic function with computational
models. Nature Reviews Neuroscience, 21(6):303–321.

Rall, W. (1964). Theoretical Significance of Dendritic Trees for Neuronal Input-Output
Relations. In R F Reiss, editor, Neural Theory and Modeling, number February, chapter
4.2. Stanford University Press.

Rall, W. (1967). Distinguishing Theoretical Synaptic Potentials Computed for Different
Soma-Dendritic Distributions of Synaptic Input. J Physiology.

Ramon y Cajal, S. (1894). The Croonian lecture. — The Fine Structure of Nervous Centers.
The Royal Society, 55(331-335).

Richards, B. and Lillicrap, T. P. (2019). Dendritic solutions to the credit assignment problem.
Current Opinion in Neurobiology, 54:28–36.

Scellier, B. and Bengio, Y. (2017). Equilibrium Propagation: Bridging the Gap Between
Energy-Based Models and Backpropagation. Frontiers in Computational Neuroscience,
11(May).

Schölkopf, B., Smola, B., Smola, A. J., Bach, F., Press, M. I. T., and Scholkopf, M. (2002).
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Be-
yond. Adaptive computation and machine learning. MIT Press.

Spruston, N. (2009). Dendritic signal integration. Encyclopedia of Neuroscience, 1:445–452.

23

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. arXiv preprint, pages 1–6.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transforma-
tions for deep neural networks. Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, 2017-Janua:5987–5995.

Xu, B., Wang, N., Chen, T., and Li, M. (2015). Empirical Evaluation of Rectified Activations
in Convolutional Network. arXiv.

24

Supplementary Figures

Figure S1: Dendritic Nonlinearity implemented as a linear combination of Sodium, Calcium,
and Potassium Current-Voltage Curves. Dendritic Nonlinearity is called the NaCaK function.
A) Top: Original NaCaK Function and its Ion channel component. Bottom: Derivatives of
these functions. B) Top: Sodium, Calcium, and Potassium channel fitted I-V curves. Bottom:
Derivatives of these I-V curves.

25

Figure S2: Comparing Nonlinear Activation Functions for the Dendrite Nodes in the FCNN
For Each Dataset. Architecture ranges from low hidden layer width (k=1) to high hidden
layer width (k=32) and mean accuracy of each model is displayed with standard error bars.
Number of trials ranges from 1-10, and trial accuracy was omitted if the training was deemed
to fail (accuracy threshold 0.55). Table 5 lists trial counts. Red: ReLU, Pink: LReLU,
Purple: Sigmoid, Green: Swish, Grey: NaCaK Nonlinearity

26

Figure S3: Significance Indicator Matrix for Comparing Nonlinear Activation Functions for
the Dendrite Nodes in the k-tree. Yellow squares indicate p<0.05 significance and blue
squares indicate p>0.05 significance. Architecture ranges from low multi-synaptic input
repetitions (k=1) to high repetitions (k=32). Number of trials ranges from 1-10, and if there
were not enough trials to run a t-test, then the block is automatically blue.

27

Figure S4: Significance Indicator Matrix for Comparing Nonlinear Activation Functions for
the Dendrite Nodes in the FCNN. Yellow squares indicate p<0.05 significance and blue
squares indicate p>0.05 significance. Architecture ranges from low hidden layer width (k=1)
to high hidden layer width (k=32). Number of trials ranges from 1-10, and if there were not
enough trials to run a t-test, then the block is automatically blue.

28

Figure S5: Significance Indicator Matrix for Comparing k-tree and FCNN Models With or
Without Synapse Nonlinearity or Non-negativity Weight Constraint. Yellow squares indicate
p<0.05 significance and blue squares indicate p>0.05 significance. Architecture ranges from
low multi-synaptic input repetitions (k=1) to high repetitions (k=32). Number of trials
ranges from 1-10, and if there were not enough trials to run a t-test, then the block is
automatically blue. NoSyn = No Synapse Nonlinearity. Syn = Synapse Nonlinearity. PosNeg
= Positive and Negative Weights. Pos = Non-negative Weights.

29

Figure S6: Heatmaps of Synaptic Activations. The images (left) are vectorized and input into
a synaptic nonlinearity layer, which yields a synaptic steady state input between -70 and 50
mV. The product of the synaptic weights, analogous to synaptic bouton neck conductances,
and the synaptic steady state inputs then lead a final synaptic activation (right) that is
received by downstream dendrite nodes.

30

Figure S7: Histograms of Synaptic Activations. The images (left) are vectorized and input
into a synaptic nonlinearity layer, which yields a synaptic steady state input between -
70 and 50 mV. The product of the synaptic weights, analogous to synaptic bouton neck
conductances, and the synaptic steady state inputs then lead a final synaptic activation
(right) that is received by downstream dendrite nodes.

31

Figure S8: Distributions of Dendritic Node Weights and Activations of a Trained 1-tree. A)
Dendritic node weight distribution (in nanoSiemens) in layers 1-10 of a 1-tree. Layers are
labeled with layer number, mean and standard deviation. B and C) Dendritic node activation
distribution (in milliVolts) in layers 1-10 of a 1-tree for "On Target" (B) and "Off Target (C)
stimuli. Layers are labeled with layer number, mean, and standard deviation.

32

MNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 8 9 10 9 10 10
LReLU 8 10 10 10 10 10
Sigmoid 1 5 0 2 0 0
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

FMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 7 10 8 10 10 10
LReLU 7 10 10 10 10 10
Sigmoid 2 3 0 0 0 1
Swish 4 7 8 9 10 10
NaCaK 9 10 10 10 10 10

KMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 8 9 9 10 10 10
LReLU 7 7 10 10 10 10
Sigmoid 1 1 1 0 0 0
Swish 10 10 10 10 10 10
NaCaK 9 10 10 10 10 10

EMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 10 10 10 10 10 10
LReLU 10 10 10 10 10 10
Sigmoid 8 3 1 2 0 0
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

SVHN

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 0 0 0 1 0 1
LReLU 1 1 1 1 1 4
Sigmoid 0 0 0 0 0 0
Swish 4 2 2 3 3 3
NaCaK 2 3 4 4 3 2

USPS

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 6 8 10 10 10 10
LReLU 6 9 10 10 10 10
Sigmoid 3 3 2 0 0 0
Swish 10 10 10 10 10 10
NaCaK 8 6 7 10 10 10

CIFAR10

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 2 4 4 5 5 6
LReLU 2 1 5 3 7 6
Sigmoid 0 0 0 0 0 0
Swish 1 4 3 2 4 6
NaCaK 10 9 8 8 9 8

Table 2: Trial Numbers for Figure 2, Comparing Nonlinear Activation Functions for the
Dendrite Nodes in the k-tree For Each Dataset.

33

MNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 10 10 10 10 10 10
k-tree SQGL Syn PosNeg 9 10 10 10 10 10
FCNN SQGL NoSyn PosNeg 10 10 10 10 10 10
FCNN SQGL Syn PosNeg 10 10 10 10 10 10

FMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 9 10 10 10 10 10
k-tree SQGL Syn PosNeg 10 10 10 10 10 10
FCNN SQGL NoSyn PosNeg 10 10 10 10 10 10
FCNN SQGL Syn PosNeg 10 10 10 10 10 10

KMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 9 10 10 10 10 10
k-tree SQGL Syn PosNeg 10 10 10 10 10 10
FCNN SQGL NoSyn PosNeg 10 10 10 10 10 10
FCNN SQGL Syn PosNeg 10 10 10 10 10 10

EMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 10 10 10 10 10 10
k-tree SQGL Syn PosNeg 10 10 10 10 10 10
FCNN SQGL NoSyn PosNeg 10 10 10 10 10 10
FCNN SQGL Syn PosNeg 10 10 10 10 10 10

SVHN

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 2 3 4 4 3 2
k-tree SQGL Syn PosNeg 9 10 10 10 10 10
FCNN SQGL NoSyn PosNeg 0 1 0 0 1 0
FCNN SQGL Syn PosNeg 7 10 10 10 10 10

USPS

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 8 6 7 10 10 10
k-tree SQGL Syn PosNeg 10 10 10 10 10 10
FCNN SQGL NoSyn PosNeg 10 10 10 10 10 10
FCNN SQGL Syn PosNeg 10 10 10 10 10 10

CIFAR10

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree SQGL NoSyn PosNeg 10 9 8 8 9 8
k-tree SQGL Syn PosNeg 6 9 10 9 9 10
FCNN SQGL NoSyn PosNeg 8 8 10 10 10 10
FCNN SQGL Syn PosNeg 7 7 3 5 7 3

Table 3: Trial Numbers for Figure 3, Comparing k-tree and FCNN models with or without
Synapse Nonlinearity.

34

MNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 10 10 10 10 10 10
k-tree NaCaK NoSyn Pos 5 9 10 10 10 10
k-tree NaCaK Syn PosNeg 9 10 10 10 10 10
k-tree NaCaK Syn Pos 10 10 10 10 10 10
FCNN NaCaK NoSyn PosNeg 10 10 10 10 10 10
FCNN NaCaK Syn PosNeg 10 10 10 10 10 10

FMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 9 10 10 10 10 10
k-tree NaCaK NoSyn Pos 4 10 10 10 10 10
k-tree NaCaK Syn PosNeg 10 10 10 10 10 10
k-tree NaCaK Syn Pos 10 10 10 10 10 10
FCNN NaCaK NoSyn PosNeg 10 10 10 10 10 10
FCNN NaCaK Syn PosNeg 10 10 10 10 10 10

KMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 9 10 10 10 10 10
k-tree NaCaK NoSyn Pos 6 8 10 10 10 10
k-tree NaCaK Syn PosNeg 10 10 10 10 10 10
k-tree NaCaK Syn Pos 10 10 10 10 10 10
FCNN NaCaK NoSyn PosNeg 10 10 10 10 10 10
FCNN NaCaK Syn PosNeg 10 10 10 10 10 10

EMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 10 10 10 10 10 10
k-tree NaCaK NoSyn Pos 10 10 10 10 10 10
k-tree NaCaK Syn PosNeg 10 10 10 10 10 10
k-tree NaCaK Syn Pos 10 10 10 10 10 10
FCNN NaCaK NoSyn PosNeg 10 10 10 10 10 10
FCNN NaCaK Syn PosNeg 10 10 10 10 10 10

SVHN

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 2 3 4 4 3 2
k-tree NaCaK NoSyn Pos 0 1 0 0 0 0
k-tree NaCaK Syn PosNeg 9 10 10 10 10 10
k-tree NaCaK Syn Pos 10 9 10 10 10 10
FCNN NaCaK NoSyn PosNeg 0 1 0 0 1 0
FCNN NaCaK Syn PosNeg 7 10 10 10 10 10

USPS

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 8 6 7 10 10 10
k-tree NaCaK NoSyn Pos 1 10 10 10 10 10
k-tree NaCaK Syn PosNeg 10 10 10 10 10 10
k-tree NaCaK Syn Pos 10 10 10 10 10 10
FCNN NaCaK NoSyn PosNeg 10 10 10 10 10 10
FCNN NaCaK Syn PosNeg 10 10 10 10 10 10

CIFAR10

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

k-tree NaCaK NoSyn PosNeg 10 9 8 8 9 8
k-tree NaCaK NoSyn Pos 0 1 4 2 3 3
k-tree NaCaK Syn PosNeg 6 9 10 9 9 10
k-tree NaCaK Syn Pos 9 10 10 10 9 10
FCNN NaCaK NoSyn PosNeg 8 8 10 10 10 10
FCNN NaCaK Syn PosNeg 7 7 3 5 7 3

Table 4: Trial Numbers for Figure 4, Comparing k-tree and FCNN models with or without
Non-negative Weight Constraint.

35

MNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 10 10 10 10 10 10
LReLU 10 10 10 10 10 10
Sigmoid 10 10 10 10 10 10
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

FMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 7 10 10 10 10 10
LReLU 10 10 10 10 10 10
Sigmoid 10 10 10 10 10 10
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

KMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 10 10 10 10 10 10
LReLU 10 10 10 10 10 10
Sigmoid 10 10 10 10 10 10
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

EMNIST

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 10 10 10 10 10 10
LReLU 10 10 10 10 10 10
Sigmoid 10 10 10 10 10 10
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

SVHN

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 1 0 1 4 2 5
LReLU 4 6 8 6 7 9
Sigmoid 1 0 1 0 2 1
Swish 2 2 0 1 0 2
NaCaK 0 1 0 0 1 0

USPS

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 8 10 10 10 10 10
LReLU 10 10 10 10 10 10
Sigmoid 10 10 10 10 10 10
Swish 10 10 10 10 10 10
NaCaK 10 10 10 10 10 10

CIFAR10

1-tree 2-tree 4-tree 8-tree 16-tree 32-tree

ReLU 0 1 1 2 2 3
LReLU 9 9 9 10 7 8
Sigmoid 5 6 4 6 6 3
Swish 5 4 5 4 6 3
NaCaK 8 8 10 10 10 10

Table 5: Trial Numbers for Figure S2, Comparing Nonlinear Activation Functions for the
Dendrite Nodes in the FCNN For Each Dataset.

36

